Three-dimensional quantitative structure activity relationship analyses of substrates for CYP2B6.

نویسندگان

  • S Ekins
  • G Bravi
  • B J Ring
  • T A Gillespie
  • J S Gillespie
  • M Vandenbranden
  • S A Wrighton
  • J H Wikel
چکیده

To begin to build an understanding of the interactions of CYP2B6 with substrates, two different 3-dimensional quantitative structure activity relationship (3D-QSAR) models were constructed using 16 substrates of B-lymphoblastoid expressed CYP2B6. A pharmacophore model was built using the program Catalyst, which was compared with a partial least-squares (PLS) model using molecular surface-weighted holistic invariant molecular (MS-WHIM) descriptors. The Catalyst model yielded a 3-dimensional model of the common structural features of CYP2B6 substrates, whereas PLS MS-WHIM generated a model based on statistical analyses of molecular descriptors for size and shape of the substrate. The pharmacophore model obtained with Catalyst consisted of three hydrophobes and one hydrogen bond acceptor region. The cross-validated PLS MS-WHIM model gave a good q2 value of 0.607. Size, positive electrostatic potential, hydrogen bonding acceptor capacity, and hydrophobicity were found to be the most relevant descriptors for the model. These models were then used to predict the Km (apparent) values of a test set of structurally diverse substrates for CYP2B6 not included in the model building, specifically lidocaine, amitriptyline, bupropion, arteether, and verapamil. Overall, both 3D-QSAR methods yielded satisfactory Km (apparent) value predictions for the majority of the molecules in the test set. However, PLS MS-WHIM was unable to reliably predict the Km (apparent) value for verapamil, whereas Catalyst did not predict the Km (apparent) value for lidocaine. In both of these cases the residual of the Km (apparent) value was greater than one log unit. The strengths and limitations of both of these 3D-QSAR approaches are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined three-dimensional quantitative structure-activity relationship analysis of cytochrome P450 2B6 substrates and protein homology modeling.

Understanding the basis of the substrate specificity of cytochrome P450 2B6 (CYP2B6) is important for determining the role of this enzyme in drug metabolism and for predicting new substrates. Pharmacophores were generated for 16 structurally diverse CYP2B6 substrates with Catalyst after overlapping the reaction sites. Two pharmacophores were determined for the CYP2B6 binding site. Both include ...

متن کامل

Three-dimensional quantitative structure activity relationship approach series of 3-Bromo-4-(1-H-3-Indolyl)-2, 5-Dihydro-1H-2, 5- Pyrroledione as antibacterial agents

The use of quantitative structure–activity relationships, since its advent, has becomeincreasingly helpful in understanding many aspects of biochemical interactions in drug research.This approach was utilized to explain the relationship of structure with biological activity ofantibacterial. For the development of new fungicides against, the quantitative structural–activityrelationship (QSAR) an...

متن کامل

Quantitative Structure-Property Relationship to Predict Quantum Properties of Monocarboxylic Acids By using Topological Indices

Abstract. Topological indices are the numerical value associated with chemical constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity or biological activity. Graph theory is a delightful playground for the exploration of proof techniques in Discrete Mathematics and its results have applications in many areas of sciences. A graph is a ...

متن کامل

Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome p450 active sites.

Structure activity relationships (SAR), three-dimensional structure activity relationships (3D-QSAR), and pharmacophores represent useful tools in understanding cytochrome P450 (CYP) active sites in the absence of crystal structures for these human enzymes. These approaches have developed over the last 30 years such that they are now being applied in numerous industrial and academic laboratorie...

متن کامل

Quantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression

Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 288 1  شماره 

صفحات  -

تاریخ انتشار 1999